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STRUCTURAL BEHAVIOR AND COMPRESSIVE STRENGTH OF

CIRCULAR CYLINDERS WITH LONGITUDINAL STIFFENING

By James P. Peterson, Ralph O. Whitley,

and Jerry W. Deaton

SUMMARY

Results of compression tests on 17 circular cylinders with longi-

tudinal stiffening are presented and discussed. In addition, supple-

mentary studies of the compressive load-shortening characteristics of

plates with large width-thickness ratios and of the strength of columns

consisting of longitudinally stiffened sheet which buckled prior to

column failure are given and employed in analyses of the cylinder tests.

Correlation between experiment and analysis was achieved in predicting

local buckling of the skin and in predicting the load-shortening charac-

teristics of the cylinders. Correlation was also achieved in predicting

the panel-instability loads of the longer cylinders, but the shorter

cylinders failed at loads oonsiderably less than those predicted, evi-

dently by a mode of deformation not considered in the analysis.

INTRODUCTION

The information available on the structural behavior of longitu-

dinally stiffened cylinders in compression is extremely meager; test

programs on complete cylinders of proportions representative of those

used in aircraft structures and for which structural parameters are

systematically varied appear to be completely lacking in the litera-

ture. As a consequence, data are needed on all phases of structural

behavior including skin buckling and cylinder failure as well as on

the deformation characteristics of cylinders under applied load.

The test results reported herein include information on these

phases of structural behavior and were obtained on 48-inch°diameter

cylinders stiffened longitudinally by Z-section stringers. The struc-

tural parameters varied were the width-thickness ratio of the skin

panels between stiffeners which had nominal values of 80, 125, and 200

and the length-radius ratio of the cylinders which was varied from 0.7

to 1.4. The tests were conducted on 7075-T6 aluminum-alloy circular



cylinders loaded in compression between the platens of a large testing
machine. The results obtained are comparedwith available theoretical
results.

SYMBOLS

AW

Acyl

b

b e

bw

C

DI

D2

Dxy

E

E 1

E 2

Esec

Etan

i

Esec

Etan

cross-sectional area of stiffener, sq in.

cross-sectional area of cylinder, sq in.

stiffener spacing, in. (fig. 2)

effective width of skin between stiffeners,

depth of web of stiffener, in.

coefficient of fixity in Euler column formula

b --, in.

aedge

plate flexural stiffness in longitudinal direction, _(EIx)e,

in-kips

plate flexural stiffness in circumferential direction, in-kips

plate twisting stiffness, in-kips

Young's modulus, ksi

plate extensional stiffness in longitudinal direction, kips/in.

plate extensional stiffness in circumferential direction,

klps/in.

secant modulus of material stress-strain curve, ksi

tangent modulus of material stress-straln curve, ksi

secant modulus of load-shortening curve, ksi

tangent modulus of load-shortening curve, ksl
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(EI) e effective bending stiffness of a stiffener-skln assembly,

kip- in. 2

EIx) e effective longitudinal bending stiffness per inch of circum-

ference of cylinder wall, in-kips

Gxy

Ie

shear stiffness of cylinder wall, kips/in.

effective moment of inertia of a stiffener-skln assembly, in. _

be

k, k_ buckling coefficient for curved and flat plate, respectively,

12(1 - _2) gcrb2

_2 Et 2

length of cylinder, in.

Np compressive load per inch of circumference at panel buckling,

kips/in.

P column buckling load, kips

R radius of cylinder, in.

t thickness of skin, in.

tw thickness of stiffener, in.

w o amplitude of imperfection, in. (ref. i)

Z b2 _l - _2curvature parameter, _-_

7 empirical correction for initial imperfections (ref. 2)

unit shortening

¢cr computed strain at local buckling of skin, neglecting effect

of curvature on buckling

Poisson's ratio of skin material
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aedge

_C r

?p

_f

radius of gyration of cylinder wall about centroidal axis,

neglecting local buckling effects, in.

edge stress corresponding to strain _, ksi

average compressive stress due to applied load, ksi

average compressive stress at local buckling of skin, ksi

average compressive stress at panel instability, ksi

average compressive stress at failure or maximum load, ksi

Subscripts:

S skin

W stiffener

R = _ radius equal to infinity
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PRELIMINARY CONSIDERATIONS

Before proceeding to a discussion of the cylinder tests conducted

in this investigation, the results of two supplementary studies which

are helpful in interpreting the results of the tests are given. The

studies entail an experimental investigation of the stiffness charac-

teristics of flat plates in compression and an analytical investigation

of the accuracy of the column formula in predicting the strength of

some longitudinally stiffened flat plates which develop skin buckling

prior to column failure.

Flat-Plate Tests

Koiter (ref. 3) has conjectured that the advanced postbuckling

behavior of a slightly curved plate subjected to axial compression may

be similar to that of a geometrically similar but flat plate. His con-

Jecture is depicted graphically for a typical plate in figure 1 where

the average stress in the curved plate divided by the buckling stress

of the flat plate is plotted against the edge strain (shortening) of

the curved plate divided by the buckling strain of the flat plate.

Although his conjecture was purposely limited to plates with small
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curvature \I_ < 21_-z/'vw/figure i is constructed without this limitation

because, on the basis of the cylinder tests discussed later, his con-

Jecture is believed to have somewhat more general application. Two

curves are shown schematically for the curved plate, one representative

of a plate without imperfections and one representative of a plate with

imperfections.

If, for the moment, ffgure I is assumed to be representative of

the behavior of curved plates, and the cylinder tests to be discussed

tend to confirm this assumption, it follows that the seemingly diffi-

cult task of predicting the postbuckling behavior of curved plates is

reduced to that of predicting the load-shortening characteristics of

flat plates, a problem which has already received considerable atten-

tion. The behavior immediately following buckling is not given by the

flat-plate analysis but it is of less practical interest than the

advanced buckling stage for many purposes. One difficulty exists in

applying flat-plate analyses to curved plates. The width-thickness

ratio of curved plates is considersbly greater than that of flat plates

for which load-shortening analyses have been verified. Hence an experi-

mental study of flat plates with large width-thickness ratios was under-

taken. Details of the study are presented in appendix A. The principal

results of the study that are useful in the analysis of curved plates

are the secant and tangent °moduli of the load-shortening curves for flat

plates which can be expressed in equation form as follows:

Ese c b e _c___Ese c =_" =
(i)

and

where

Etan _ Etan

Esec i) 1 6cr
_--2-+ 0.42
E

(2)

:i+ 0.28 -

Analysis of Column Tests

Because predictions of the strength of longitudinally stiffened

curved plates depend to a great extent upon the use of the column for-

mula as applied to stiffened plates that buckle locally at loads
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considerably less than the column load, it is desirable to compare pre-

dictions made by using the formula with the observed strength of flat

panels to determine what errors should be associated with use of the

formula when the effects of curvature do not complicate the comparison.

Such a comparison has been made with the test data of reference 4 and

is presented in appendix B. Results of the comparison indicate that

prediction and experiment differ by no more than l0 percent.

CYLINDER TESTS

Tests on 17 circular cylinders stiffened longitudinally with

Z-section stringers constituted the principal part of this investiga-

tion. The cylinders were approximately 48 inches in diameter (150 inches

in circumference) and differed from one another in the width-thickness

ratio of the skin between stringers b/t and in cylinder length. Pro-

portions of the cylinders were such that the cylinders experienced skin

buckling at rather low loads and buckled into a more general mode at

higher loads. The more general mode entailed rather large lateral

deformations of the stiffeners and buckled skin as a unit and consisted

of several diamond-shape buckles around the circumference of the cylin-

der. Each buckle encompassed the full length of the cylinder. This

type of buckling is hereinafter termed "panel buckling." The tests and

some of the results are discussed in this section of the paper.
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Test Specimens and Test Procedure

Construction details of the test cylinders are given in figure 2,

and some pertinent dimensions of the cylinders are given in table I.

The dimensions given are nominal except those given for skin thickness

which were obtained by a large number of micrometer measurements and

those given for cross-sectional area which were determined by weighing.

The cylinders were fabricated with the with-grain direction of the

skin material in the circumferential direction and with a single longi-

tudinal splice in the skin. The stiffeners were attached to the skin

with 5/32-inch-diameter spot welds spaced approximately 1/2 inch apart.

The circularity of the ends of the cylinders was maintained with the

use of 1/4-inch-thick aluminum bulkheads in each end of the cylinders,

which had diameters somewhat smaller than the clear distance between

diametrically opposed stiffeners. The bulkheads were held in place by

a low-temperature (_160 ° F) potting material. The ends of the cylin-

ders were machined flat and parallel and the cylinders were tested with

the bulkheads and potting material in place. The skin splice was made

with a double row of spot welds, one row which served also to attach a
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stiffener to the skin. In a few cylinders some of these welds failed

during the machining operation and were replaced with blind rivets.

The cylinders were constructed of 7075-T6 aluminum alloy. Typical

material properties were used in reducing the data. Young's modulus E

was taken as i0,500 ksi, Poisson's ratio _ was assumed to be 0.32, and

the material density was assumed to be 0.i01 pound per cubic inch.

The cylinders were loaded in compression in the Langley 1,200,00_

pound-capacity testing machine after they had been carefully alined in

the machine to insure uniform bearing between the ends of the specimens

and the platens of the testing machine_ one of the platens could be

tilted to conform to the machined shape of the specimens. Resistance-

type wire strain gages were mounted on the skin and stiffeners of the

cylinders prior to testing, and strains from the gages were recorded

during the test with the use of an automatic strain recorder. Two types

of gages were used: gages with a 13/16-inch gage length were used on

the skin to detect local buckling and gages with a 6-inch gage length

were used on the stiffeners and on the skin near stiffeners to help

detect general buckling of the specimens and to indicate stress distri-

bution in the cylinders. Shortening of the distance between the platens

of the testing machine was recorded against load during each test with

the use of resistance-type wire strain gages mounted on small cantilever

beams whose deflection was equal to the shortening of the distance

between platens.

Test Results and Discussion of Results

Load-shortening curves.- Plots of average compressive stress due

to applied load against unit shortening are given in figure 3 for all

of the test cylinders except cylinder 15_ a load-shortening curve was

not obtained for this cylinder. The shaded circles denote the load at

which panel buckling was observed. These loads coincide in many cases

with sharp breaks in the load-shortening curves. Other sharp breaks

correspond to changes in mode shape from one with a certain number of

waves around the circumference to one with one more or one less wave

than previously. The number of circumferential waves in the panel

instability mode is noted on figure 3 for those specimens whose test

log included that information.

A calculated curve based on equation (i) and the conjecture

advanced by Koiter, that the advanced postbuckling behavior of a curved

plate is similar to that of a flat plate of like dimensions, is shown

also in figure 3 for comparison. The value of Ccr used in the calcu-

lation was obtained from the flat-plate buckling charts of reference 1.

The stiffeners were assumed to be sturdy and to carry a load equal to
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Esec)w_AW . Calculation is generally in rather good agreement with

experiment, with computed values of shortening being slightly less than

measured values for cylinders with a skin width-thickness ratio of 80

and slightly greater than measured values for cylinders with skin width-

thickness ratios of 125 and 200.

The main conclusion to be drawn from figure 3 is that Koiter's con-

Jecture appears to be substantiated by the cylinder data in areas where

substantiation can be expected. This area encompasses that portion of

the curves from some unspecified point somewhat above the local buckling

stress up to the panel buckling stress. Substantiation exists for all

cylinders including those with skin panels having considerable curvature

and thereby an analytical means for evaluating some of the stiffness

properties of buckled cylinders is provided. These stiffnesses are

required for predicting panel instability or general instability

failures.

Local buckling.- Buckling coefficients as determined by test are

plotted against the curvature parameter Z in figure 4. The coeffi-

cients shown were determined from the load at which the load-shortening

curve of the cylinders deviated from the linear portion of the curve

with a slope approximately equal to Young's modulus. Generally, this

load could be determined rather precisely because the slope of the load-

shortening curve changed rather abruptly when the skin buckled. When

buckling was more gradual (generally cylinders with b/t = 80), the

point of buckling was taken as the intersection of two straight lines

used to approximate the curve in the vicinity of the buckling load.

Buckling loads determined in this manner are generally higher and their

scatter is somewhat less than those determined by observation or by the

strain-reversal method (ref. 5). However, in the test cylinders the

loads obtained by the three methods Were generally in close agreement

(differing by less than 5 percent) if the data were adequate to obtain

buckling loads by the three methods. In a few tests, however, buckling

was observed in local areas of the test cylinders at loads as low as

80 percent of those shown in figure 4, possibly a result of loading the

cylinders nonuniformly either due to nonuniform machining on the ends

of the cylinders or to an inadequate adjustment of the platens of the

testing machine prior to testing. The cylinders with appreciably lower

observed buckling loads than those in figure 4 are noted in table I.

Also shown in figure 4 is the buckling stress of the cylinders com-

puted according to reference 1 by using two different assumptions for

initial-imperfection parameter Wo2/Rt. The lower curve was calcu-the

Wo 2
fated by using - 0.00065 which is the value used in reference 1

Rt

to achieve correlation with the middle of the scatter band of the data
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of reference 6 on single-panel specimens with two angle-shaped stiff-

eners supporting each of the unloaded edges of the curved sheet. Hence_

higher buckling stresses were achieved in the present tests than were

achieved in the single-panel tests of reference 6. Had the load at

which the first buckles were observed been used to construct figure 4,

two of the points at Z _ 6.5 would have fallen below the curve repre-

Wo2
sented by - 0.00065.

Rt

The upper curve on f_gure 4 was calculated with w°2 - 0. It
Rt

represents the classical small-deflectlon buckling stress of curved

plates in compression as given by reference 7 and upon which the equa-
tions of reference 1 are based.

Panel buckling.- The average stress at which panel buckling occurred

in each of the test cylinders is recorded in table I. The panel buckling

load was taken as that load at which the characteristic diamond-shape

buckles could first be seen over a large portion of the cylinder circum-

ference. In some tests panel buckling occurred suddenly over the entire

circumference of the cylinder and was accompanied by a falling off in

testing machine load; in other tests panel buckling developed more grad-

ually and was unaccompanied by any marked departure from the preceding

loading history. (See fig. 5.) One of the cylinders in the panel

buckling mode is shown in figure 5.

The panel instability load of the test cylinders can be calculated

by using reference 2 provided the required bending and extensional stiff-

nesses are properly modified to account for the skin being buckled at

panel instability. The necessary equation can be written as (ref. 2)

c_2Dl 2
(5)

where the stiffnesses DI, D2, El, and E 2 are needed to determine

the panel instability load9 the stiffness E 2 is implicit in the fac-

( ) is indicated in the discus-tor 7. The calculation of D1 _ EIx e

sion on column tests (appendix B) and the calculation of E1 follows

from the discussion of load-shortening curves for plates (appendix A).

The stiffness E1 was taken as

- +

(Esec)wt bt (Esec) W
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The stiffnesses D2 and E2 were taken rather arbitrarily as

D2 i

Est3 12

(6)

that is, the bending stiffness in the circumferential direction was

taken as the value for unbuckled sheet and the extensional stiffness of

the buckled skin in the circumferential direction was assumed to be

equal to that of the buckled skin in the axial direction.

Calculations made with the use of equation (3) are given along with

the test data from table I in figure 6. The fixity coefficient c was

taken equal to 3.50, the value used in reference 2 to achieve correla-

tion between cylinder tests and theory, for small applied loads and was

modified for plasticity as in the column calculations of appendix B for

larger applied loads. The calculations with c modified for plasticity

are shown as dashed lines in figure 6. The stress-strain curves employed

were the same as'those used in the column calculations, and values for

_cr for the present calculations were obtained in the same manner as

for the column calculations (appendix B). Agreement between calculation

and experiment is reasonably good for the three cylinders in each series

at the higher values of slenderness ratio Z/p_ and is rather poor for
the two cylinders in each series at the lower values of slenderness

ratio. An explanation for this behavior has not been found. However,

it may be associated with twisting deformations of the stiffeners to

accommodate local buckling of the skin in the advanced local buckling

stage. It was noticed in the course of the tests that the stiffeners

did not provide nodal lines in the advanced local buckling stage; that

is, the local buckles tended to have different circumferential wave

lengths, depending upon whether they were in-buckles or out-buckles.

Because the buckles were alternately in and out around the circumfer-

ence as well as along the cylinder, the stiffener twisted alternately

back and forth along its length to conform with the local buckling pat-

tern of the skin. The twisting increases or decreases the moment of

inertia of the stiffener depending upon the direction the stiffener is

twisted; twisting also induces severe bending stresses in the out-

standing flange of the stiffener which could ultimately cripple the

stiffener and severely reduce its flexural stiffness. The lower panel

buckling loads may be associated with this phenomenon. In order to

determine whether load-induced twisting of stiffeners (as opposed to

buckle-induced twisting as Just described) was an importantconsidera-

tion in the failure of the test cylinders, twisting calculations were

L
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madewith the use of the equations of reference 8, pages 166 to 171,
for flat panels. The calc_11ations indicated that load-induced twisting
does not account for the discrepancy between theory and experiment at
low values of the slenderness ratio. Howeverbuckle-induced twisting
which results in crippling of the outstanding flange of the stiffener
cannot be discounted on the basis of such calculations.

Of interest also are somecalculations that were madeto determine
the influence of changes in someof the stiffnesses on the calculated
panel instability load. Someof the stiffnesses used in the calculations
Just presented, namely, D2 and E2, were chosen arbitrarily and it has
been suggested (ref. 8, p. 165) that the stiffness D2 increases as the
skin is loaded from the unbuckled state into the postbuckling range, due
to the corrugation effect of the buckles.

The stability equation of reference 9 was used to make the calcula-
tions because equation (3) does not apply in this case. In the calcula-
tions DI and E1 were taken as before, Gxy was conservatively taken
as the value given in reference i0 for flat plates, E2 and Dxy were
varied in the various calculations madefrom their estimated value but
found to have little influence on the panel instability load, Poisson's
ratios for bending and extension were taken as zero, and D2 was eval-
uated on the basis of the buckles acting as a corrugated sheet. For the
purpose of calculating D2 the buckle pattern was taken to be sinusoidal
in each direction and the buckle depth w was taken as

--kl II 1 (T)
t CcrY

where the proportionality constant kI was taken as unity on the basis

of the information given in reference ii for flat plates. The reduc-

tion associated with 7 was handled in much the same manner as in

equation (3)- The resulting panel instability loads were considerably

(up to 40 percent) greater than those given in figure 6 for large values

of slenderness ratio and slightly (up to i0 percent) greater at small

values of slenderness ratio. The increase resulted from the increase

in D 2 and not from the use of a different stability equation because

the two equations yielded essentially the same buckling loads in sepa-

D2 i
rate calculations made by using - and values for the other

Et3 12

stiffnesses as given previously.

This result suggests that the increase in D2 associated with

local buckling may not exist; but the test for whether it does or does
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not exist is admittedly not a good one because of other uncertainties
in the calculations. It would seemhowever that the increase in stiff-
ness from local buckling should not be relied upon in calculations for
instability failures of stiffened shells, at least until additional
information is available which clears up someof the uncertainties which

exist in prescribing values to stiffnesses and in the use of the various

stability equations concerned.

Failure.- Most of the test cylinders took some additional load after

panel buckling_ and some cylinders_ generally the longer cylinders with

the smaller values of b/t, took an appreciable amount more (table I).

Failure of the shorter cylinders was usually accompanied by weld failures

and crippling of the stiffeners in areas of severe local bending. (See

b
fig. 7.) Failure of the longer cylinders with _ = 200 were also of

this type; however_ maximum load for the longer cylinders with _ = 125
t

and 80 were often characterized by a growth of the panel instability

mode and an ultimate falling off in testing-machine load. For some of

these cylinders data recording was stopped before a maximum load was

reached and for two cylinders (cylinders 3 and 4) loading was stopped

before a maximum load was reached in order to save the cylinders for

further visual and photographic study. In this regard, the loading

history prior to panel instability was considered to be of principal

concern. The loading history above the panel instability load was

deemed of lesser interest because of the large deformations associated

with the high loads.

L
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CONCLUDING REMARKS

Results of compression tests on 17 circular cylinders with longi-

tudinal stiffening are presented and discussed. Attempts at predicting

test results are also given. Correlation between experiment and analysis

was obtained in the areas of skin buckling and load-shortening behavior

and in the area of panel buckling for the longer test cylinders. Cor-

relation was not achieved for panel buckling of the shorter test cylin-

ders whose behavior was evidently influenced by a mode of deformation

not considered in the analysis. Additional tests areneeded to resolve

the discrepancy between theory and experiment in this latter area.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Air Force Base, Va., February 13, 1962.
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APPENDIX A

COMPRESSIVE TESTS TO DETERMINE POSTBUCKLING BEHAVIOR

OF FLAT PLATES

Test Specimens and Test Procedures

The dimensions of the test specimens used in determining the post-

buckling behavior of flat plates are given in figure 8. The specimens

were loaded in compression in the Langley 1,200, O00-pound-capacity

testing machine. The ends of the specimens were machined flat and par-

allel prior to testing, and the specimens were carefully alined in the

testing machine to insure uniform bearing between the ends of the speci-

mens and the platens of the testing machine. Shortening of the distance

between the platens of the testing machine was autographically recorded

against load during each test with the use of resistance-type wire

strain gages mounted on small cantilever beams whose deflection was

equal to the shortening of the distance between platens.

Results and Discussion

Results of the tests are shown in figure 9. The curves in the

figure were obtained by fitting to the data a curve of the form

beb - { (_)

where the parameter _ is a function of ecr/_. Equation was

used because previous analytical analyses of the postbuckling behavior

of flat plates have indicated that the effectiw_-width ratio can be

expressed by an equation of this type.

In figure i0 the test results are also shown plotted against the

parameter _, along with the results of some selected analytical studies

that have been made on the effective width of long flat plates in com-

pression. On this type of plot Von K_rm_n's equation (ref. 12), which

is given by equation (AI) with _ = 1.0, is represented by the horizon-

tal line { = 1.0. Koiter's results (ref. 13) are given by the upper-

most curve on the figure and apply with only small errors to plates

having either simply supported or clamped edges as well as to plates

having elastically restrained edges in which the restraint is independ-

ent of stress and buckle Length. The curve showing Stein's results

(ref. ii) lies between that of Von K_rm&n and Koiter and represents one
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of the more accurate analyses to date for long simply supported plates

in the postbuckling range immediately following buckling and up to edge

strains of about six times the buckling strain.

Only those test points with tails on the load-shortening curves of

figure 9 were used in figure lO in obtaining an expression for the effec-

tive width of flat plates. The test points at values of shortening not

much greater than the buckling strain were not used because this region

is the most sensitive to initial imperfections which may exist in the

test specimens (ref. 5) and the points at high values of edge strain

were not used because plasticity effects become important in this range.

However, the good agreement between the test data and the empirical

curves in this latter range (fig. 9) indicates that the plasticity por-

tion of the curves is also adequately predicted for specimens with values

of b/t less than about 125; the data for specimens with larger values

of b/t are not given for loads approaching the crippling load because

failure of these specimens initiated from the sides due to the inability

of the flanges in providing adequate support to the adjacent plates at

the high loads. Hence the failures were not true crippling failures.

This agreement between the test data and the empirical curves at

high loads is somewhat surprising because crippling investigations on

flat plates with width-thickness ratios less than about 60 have shown

that the theoretical load-shortenlng curve is about 8 percent too high

on the average at maximum (crippiing) load (refs. 14 and 15). This dis-

crepancy is probably the result of initial imperfections, which are

known to be important for the low ratios of edge strain to buckling

strain pertinent to plates with small width-thickness ratios, and of

the type of test specimens that have generally been used. Investigations

were generally made on plates supported in V-groove fixtures which may

not support the plate adequately in the advanced postbuckling stage.

The increase in compressive yield stress in the formed corners over that

in the plate, which is appreciable for some materials, is not believed

to be very important. The test specimens made from thin sheets were

formed cold in the as-received condition; the specimens made from thicker

sheets were formed in the as-received condition by heating the areas to

be bent to approximately 200 ° F. Little or no increase in yield strength

is anticipated in either of these operations in view of the fact that

the specimens were made with the cross-grain direction of the material

in the longitudinal direction of the specimens and reference 16 indicates

that little increase in yield stress should be anticipated when loading

is in the cross-grain direction. Further substantiation for the argu-

ment that the formed corners have little effect on the crippling strength

of the test specimens is obtained when one considers that an increase of

say lO percenC in compressive yield stress in the formed corner of a

crippling specimen was found to increase the crippling strength by only

about 2_ percent. (See ref. 14.) This small increase is a result of
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the crippling strength of the plate being approximately proportional to

the square root of the compressive yield stress and of the crippling

strength of plates with formed corners appearing to be about equally

dependent upon the yield stress of the plate and the yield stress of the

formed corner.

by

The equation of the curve labeled "empirical" in figure i0 is given

be - (At)
b

where

:l+ o.28 -

The secant and tangent moduli of the load-shortening curve are some-

times useful. They are given by

and

where

(EEtan = tan

Ese c and Eta n are the secant and tangent moduli of the plate

material at a value of strain equal to the edge strain K.
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APPENDIX B

ANALYSIS OF COLUMN TESTS OF SHEET-STIFFENER PANELS

Determination of the column strength of sheet-stiffener assemblies

with the sheet buckled is best accomplished by converting the sheet-

stiffener column, which has different properties in the skin and stiff-

eners by virtue of the skin being buckled to an equivalent column having

material properties of the stiffener, and then computing the column load

in the usual manner by using the tangent modulus in place of Young's

modulus if the column stress is in the plastic range. (See ref. 17.)

Conversion of the column may be accomplished by multiplying the skin

width b by (Etan)s/(Etan)W_ _ where (Etan) s is the tangent modulus of

the load-shortening curve of the skin and (Etan) W is the tangent modu-

lus of the stress-strain curve of the stiffener; both moduli are evalu-

ated at a given value of edge strain _. The assumption is made here

that the stiffener has a sturdy cross section and does not develop local

buckling; the skin and stiffener may have different stress-strain curves,
however.

The column strength of the sheet-stiffener column is given by

c 2(EI)e
P : (m)

_2

where (El)e = (Etan)wle and Ie is the effective moment of inertia

of the section obtained by converting the column to one having material

properties of the stiffener. The load P can be expressed in terms of

the edge stress aedg e as

P= qedge IAW bt (Esec)s_ (Esec)W (B2)
+ (Esec)w_ (Esec) S

where (Esec)s, (Esec)s, and (Esec) W are the respective secant moduli

of the load-shortening curve of the skin, the stress-strain curve of the

skin 3 and the stress-straln curve of the stiffener_ again the moduli are

evaluated at the chosen value of edge strain _. Since both sides of

equation (B2) depend upon _, the process for computing the column load

ofsuo ess v 
are given by equations (A2) and (A3), respectively.
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The above equations have been applied to selected panel tests (from

ref. 4) and the results are given in figure ll. Only panels with sturdy

stiffeners and with large values of width-thickness ratios of the skin

were chosen for study. Furthermore, only those panels with the largest

ratios of stiffener thickness to skin thickness were chosen_ these panels

are more representative of the proportions found in longitudinally stiff-

ened curved-sheet construction and their failure is more likely to be

representative of failures associated with curved sheet. The compres-

sive stress-strain curves employed in the calculations for figure ll

had pertinent properties which differed little from the average values

given in reference 4 for the test panels. Typical stress-strain curves

were used which had a value for Young's modulus of 10,500 ksi 3 a propor-

tional limit of 55 ksi, and 0.2-percent-offset yield stresses of 72 ksi

and 78 ksi, respectively, for the skin and stiffeners. The values of

Ccr used in the calculations were obtained from reference 1.

Preliminary calculations indicated that the computed failing loads

were too high for short columns which develop edge stresses in the plastic

range. This result probably indicates that the effective column length

of a plastic column tested flat-ended between the platens of a testing

machine should be considerably greater than that of a similarly tested

elastic column for which measurements of effective column length have

been made (ref. 18)_ the plastic column may develop "plastic hinges"

near the ends of the column because of the high compressive stresses

associated with restraint of bending in these areas. Accordingly, if

the applied stress of the column approaches the compressive yield stress,

it is inconceivable that any appreciable clamping exists and the effec-

tive length should be nearly the actual length as in a simply supported

column. The calculations for figure ll were made therefore with a cor-

rection to the fixity coefficient. It was assumed that the fixity

coefficient obtained from elastic tests applied up to edge stresses

equal to 80 percent of the proportional limit stress, that a coeffi-

cient of unity applied above an edge stress of 80 percent of the com-

pressive yield stress, and that the coefficient varied linearly with

edge stress between these values. The correction used is arbitrary but

a better value cannot be determined from the present data because coltmm

load is rather insensitive to fixity coefficient in this range.

The test points at a slenderness ratio of about 65 are of particular

interest in the present investigation in that column buckling occurred

before the edge stress exceeded the proportional limit stress. Most of

the test cylinders reported in the body of the paper fall into this cate-

gory. The agreement between calculation and experiment in this case is

reasonably good_ none of the test points differ from the predicted

slenderness ratio by more than lO percent. The calculations were made

for panels of nominal dimension and the test points were plotted at

values for slenderness ratio corresponding to the nominal value of

radius of gyration of the panels.



18

KEFERENCES

i. Peterson, James P., and Whitley, Ralph 0.: Local Buckling of

Longitudinally Stiffened Curved Plates. NASA TN D-750, 1961.

2. Peterson, James P., and Dow, Marvin B. : Compression Tests on Cir-

cular Cylinders Stiffened Longitudinally by Closely Spaced

Z-Section Stringers. NASA M_40 2-12-99L, 1959.

3. Koiter, W. T. : Buckling and Post-Buckling Behaviour of a Cylindrical

Panel Under Axial Compression. Rep. S.476, Nationaal Luchtvaart-

laboratorium (Amsterdam), May 1956.

4. Hickman, William A., and Dow, Norris F. : Data on the Compressive

Strength of 75S-T6 Aluminum-Alloy Flat Panels Having Small, Thin,

Widely Spaced, Longitudinal Extruded Z-Sectlon Stiffeners. NACA

TN 1978, 1949.

5. Hu, Pal C., Lundquist, Eugene E., and Batdorf, S. B.: Effect of

Small DeviatiCns From Flatness on Effective Width and Buckling of

Plates in Compression. NACA TN 1124, 1946.

6. Crate, Harold, and Levin, L. Ross: Data on Buckling Strength of

Curved Sheet in Compression. NACAWR L-557, 1943. (Formerly

NACAARR 5J04.)

7. Stowell, Elbridge Z.: Critical Compressive Stress for Curved Sheet

Supported Along All Edges and Elastically Restrained Against

Rotation Along the Unloaded Edges. NACAWR L-691, 1943. (For-

merlyNACA RB 3107.)

8. Argyrls, J. H., and Dunne, P. C.: Part 2. Structural Analysis.

Structural Principles and Data, Handbook of Aeronautics, No. l,

Pitman Pub. Corp. (New York), 1952.

9. Stein, Manuel, and Mayers, J.: Compressive Buckling of Simply

Supported Curved Plates and Cylinders of Sandwich Construction.

NACA TN 2601, 1952.

i0. Kromm, A., and Marguerre, K.: Behavior of a Plate Strip Under Shear

and Compressive Stresses Beyond the Buckling Limit. NACA _M 870,

1958.

Ii. Stein, Manuel: Loads and Deformations of Buckled Rectangular Plates.

NASA TR R-40, 1959.

L

1

9
6

1



19

L

I

1

12. Von K_rm_n, Theodor, Sechler, Ernest E., and Donnell, L. H. :

Strength of Thin Plates in Compression. A.S.M.E. Trans.,

APM-54-5, vol. 54, no. 2, Jan. 30, 1952, pp. 55-57.

The

13. Koiter, W. T.: De meedragende breedte biJ groote overschriJding der

knikspannlng voor verschillende inklemming der plaatranden. (The

Effective Width of Flat Plates for Various Longitudinal Edge Con-

ditions at Loads Far Beyond the Buckling Load.) Rep. S.287,

Nationaal Luchtvaartlaboratorium (Amsterdam), Dec. 1945.

14. Anderson, Melvin S.: Compressive Crippling of Structural Sections.

NACA TN 5553, 1956.

15. Anderson, Roger A., and Anderson, Melvin S. : Correlation of

Crippling Strength of Plate Structures With Material Properties.

NACA TN 3600, 1956.

16. Woods, Walter, and Heimerl, George J. : Effect of Brake Forming in

Various Tempers on the Strength of Alclad 75S-T Alumlnum-Alloy

Sheet. NACA TN 1162, 1947.

17. Stowell, Elbridge Z.:

Columns and Plates.

TN 1556.)

A Unified Theory of Plastic Buckling of

NACA Rep. 898, 1948. (Supersedes NACA

18. Schuette, Evan H., and Roy, J. Albert: The Determination of Effec-

tive Column Length From Strain Measurements. NACA WR L-198, 1944.
(Formerly NACAARR L4F24.)



2O

TABI_ I

DIMENSIONS AND TEST RESULTS OF CYLINDERS

Z, b, t,
Cylinder in. in. in.

1 17.0 2.00 0.0249
2 2o.o ..... o244

3 25.0 .0246

4 30.0 .0248
4a 50.0 ..... 0248
5 54.0 2.00 .0246

6 17.o %2 .0248

7 20.0 ..... 0256
8 25.0 ..... 0256

9 30.0 ..... 0240

i0 34.0 _8 .0247

ii 17.0 5.00 .0247
12 20.0 ..... 0248
15 25.0 ..... 0244

14 50.0 ..... 0257
14a 50.0 ..... 0258

15 34.0 5.00 •0247

0.0587
.0373

.0575

.0582

.0595

.o571

.o388

.o571

.0377

.o382

.0574

.0587

•0570

•0370

.0582

.0_0_

•0574

6.65
6.47

6.51

6.60

6.69
6.48

5.60

5.64

5.67

5.44

5.51

4.88
4.83
"4.79
4.72
5.09

4.84

Scr,

ksi

(a)

9.6

9.7

9.7

lO.O

lO.O (8.8)
lO.5 (8.5)

4.8

5.1

5.4 (4.5)
5.2

5.4 (4.6)

4.1

4.3
4.1

5.5 (5.0)
4.3 (3.6)

%.4

qp, Sf,

ksi ksi

27.4 28.1
22.9 25.9

18.1 bl 9.2

15.0 bls. 5
13.4 18.4

Ii. 7 16.8

22.4 22.4

17.5 17.9
14.6 15.0

ii.4 12.1

8.95 i0.5

15.7 15.9

15.4 15.4
i0.8 ii. 0

8.80 9.52
9.50 9.75

8.55 8.95

L
1

9
6
1

aDetermined from load-shortening curve. Values in parentheses were

determined from direct observation or from straln-gage data and denote

buckling which encompassed only small area of cylinder wall.

bGreatest applied stress; loading was stopped before maximum load

was reached.

CObserved buckling stress; no record obtained.
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Figure i.- Schematic representation of load-shortening curves for flat

and curved plates.
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(a) Wall details (2_R = 190 in.). (b) Stiffener details.

Figure 2.- Construction details of test cylinders.
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Figure 4.- Local buckling of cylinder wall between stiffeners.
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Figure 8.- Flat-plate specimens. (b = 5 in., nominally. )
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Figure IO.- Comparison of some analytical studies on effective width

of flat plates with test data.



;K

35

_w
_D
Oh

"_f,
ksi

6o i !

20

-- bw 12

tw

o 20

..... I-
[] 60_ Test - _ --

b _ _>50J
_ /-_ =0 --Elast c_ ^ .

0 f\ - ---- Plast cJ ualc.

50---- --_

40 60 80 O0

l
pV_

2O

60

40

ksi

20

....... I! ! T]I
,> I

_/-¥ =o _ ]

' ' 50 " -- -

I I _ I L 1
20 40 60 80 I O0 I 2 0

Z

pv_

T = 1. O0.

Figure ll.- Comparison between calculation and experiment for panels of

reference 4. 0nly panels with _ > 2b are considered.



34

ksi

6O

40

2O

b_ =12--

t W

_ _ 0 751
6O

b I_ _50_ Test

f¥ -o | __
pl asticasticJ _ ualc.

0 2O 4O 60 8O I O0

P

120

pVa

F

C

60

40

_f,

ksi

2O

b

O.-_ _0_

C) __lZl 2

1

I
b w

=20 ........

t w

i
L

$7 5

0 20 40 6O

L

pV_

80 I O0 120

(b) _ = 0.65.
t

Figure ii.- Concluded.

NASA-LanKI.eF, 1962 L-1961


